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5 DEFLECTIONS

5.1 Deflection Diagrams and the Elastic Curve

Deflections of structures can occur from various sources, such as loads, temperature,
fabrication errors, or settlement. In design, deflections must be limited in order to provide
integrity and stability of roofs, and prevent cracking of attached brittle materials such as
concrete, plaster or glass.

Furthermore, a structure must not vibrate or deflect severely in

order to “appear” safe for its occupants. More important, 0
though, deflections at specified points in a structure must be A=0
determined 1if one is to analyze statically indeterminate roller or rocker
structures.

original undeformed position after the load 1s removed.
v The deflection of a structure is caused by its internal

loadings such as normal force, shear force, or bending
moment.

v' For beams and frames, however, the greatest deflections
are most often caused by internal bending, whereas
internal axial forces cause the deflections of a fruss.

The deflections to be considered throughout this text apply only 5
to structures having linear elastic material response. Under this
condition, a structure subjected to a load will return to its & =i
pin
A=0

v" Before the slope or displacement of a point on a beam or 0=0
frame 1s determined, it is often helpful to sketch the fixed support
deflected shape of the structure when it is loaded in order
to partially check the results. s ”

v' This deflection diagram represents the elastic curve or
locus of points which defines the displaced position of \
the centroid of the cross section along the members. 6

v' If the elastic curve seems difficult to establish, it is
suggested that the moment diagram for the beam or
frame be drawn first.

v' A positive moment tends to bend a beam or horizontal

fixed-connected joint

member concave upward. Likewise, a negative moment
tends to bend the beam or member concave downward, \%

01

positive moment, negative moment,
concave upward concave downward

pin-connected joint
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P,
P,
beam M beam

NN .

moment diagram moment diagram
inflection point M
. inflection point f—ﬂ\
m\% +M ( I
deflection curve  + M deflection curve

EXAMPLE 5.1.1
Draw the deflected shape of each of the beams shown in Figures.

Solution
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EXAMPLE 5.1.2
Draw the deflected shape of each of the frames shown in Figures.

Solution
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5.2 Elastic-Beam Theory

When the internal moment M deforms the element of v
the beam, each cross section remains plane and the
angle between them becomes d6, Fig. b. The arc dx that
represents a portion of the elastic curve intersects the

Lﬂ, "

DEFLECTIONS ™

ENGINEERING

neutral axis for each cross section. The radius of

curvature for this arc is defined as the distance , which dx—| =
1s measured from the center of curvature Q' to dx. Any | N .
arc on the element other than dx is subjected to a |
normal strain. (@)
Page No. 52
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For example, the strain in arc ds, located at a position y 0
from the neutral axis, 1s

€=(dS '—ds)/cls
However,
ds =dx =pd@ and ds'=(p—-y)/d6f andso do

 lpmy)do-pd6 1 o o

pd 6 p Y
If the material is homogeneous and behaves in a linear ~ds M (T f )M
ax

4 dx

. . c
elastic manner, then Hooke’s law applies, ¢ = ="

Also, since the flexure formula applies, o = _A/j_y'

5 1 ; . s : before after
Combining these equations and substituting into the joformation detoriiation

above equation, we have (b)

(1)

SR

1
Jo,
Here
p = the radius of curvature at a specific point on the elastic curve
(1/ p is referred to as the curvature)
the internal moment in the beam at the point where p is to be
determined
= the material’s modulus of ¢lasticity
the beam’s moment of inertia computed about the neutral axis

The product EI in this equation is referred to as the flexural rigidity, and it is always a
positive quantity. Since dx = p d6, then from Eq. 1

do=-La
I

If we choose the v axis positive upward, Fig. @, and if we can express the curvature (1/p) in
terms of x and v, we can then determine the elastic curve for the beam. The curvature
relationship is

1 d¥v /dx?

P [l de )"

Therefore,

M d¥ /dx?
— = — (3
EI [1+(dv /dx )’ |

This equation represents a nonlinear second-order differential equation. Its solution, v = f{x),
gives the exact shape of the elastic curve-assuming, of course, that beam deflections occur
only due to bending. In order to facilitate the solution of a greater number of problems, Eq. 3
will be modified by making an important simplification. Since the slope of the elastic curve
for most structures is very small, we will use small deflection theory and assume dv/dx= 0.
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Consequently its square will be negligible compared to unity and therefore Eq. 3 reduces to

dv M
F=— ..(4)
dx - EI
It should also be pointed out that by assuming dv/dx= 0, the original length of the beam’s
axis x and the arc of its elastic curve will be approximately the same. In other words, ds in

Fig. b 1s approximately equal to dx, since
ds =\Jdx > +dv> =L+ (dv /dx Vdx ~ dx

This result implies that points on the elastic curve will only be displaced vertically and not
horizontally.

5.3 The Double Integration Method

Once M 1s expressed as a function of position x, then successive integrations of Eq. 4 will
yield the beam’s slope, @~ tan@ =dv /dx = J.(M | EI ) dx and the equation of the elastic
curve, v =f (x) = j j (M | EI ) dx respectively.

For each integration it is necessary to introduce a “constant of integration” and then solve for
the constants to obtain a unique solution for a particular problem.

Sign Convention
When applying Eq.4, it is important to use

the proper sign for M as established by the n M( ; M
sign convention that was used in the
(a)

derivation of this equation, Fig.a.
Furthermore, recall that positive deflection,
v, 1s upward, and as a result, the positive

slope angle @ will be measured 0 <
counterclockwise from the x axis. The
reason for this is shown in Fig.h. Here, " elastic curve
positive increases dx and d in x and create i +db
an increase d@ that is counterclockwise. 19
Also, since the slope angle will be very +dv —
small, its value in radians can be determined T
directly from @ = tan 0 = dv/dx +x l
+dx
(b)

THEORY OF STRUCTURE I COURSE BY SHAHO AL-BRZINJ], B.Sc., M.Sc., CIVIL ENGINEERING Page No. 54



University of Anbar, College of Engineering, Civil Engineering Department. fﬂ]}
Theory of Structures I, Course 2019-2020 ) ”I s

DEFLECTIONS OTRCLOFENGNEERIG
Deflection Diagrams and the Elastic Curve: The Double Integration Method

EXAMPLE 5.3.1

Each simply supported floor joist shown in the photo ) Y 1% 5 <
is subjected to a uniform design loading of 4 kN/m, &= 0 78 1 LBl
Fig.a. Determine the maximum deflection of the joist. < @74 22 AN 4 >
1 {,'{ o V‘i"f 7 ‘v;’,‘!‘ , IS g
EI is constant. @724 P . ” ﬁ
< \"[ ,«""/l,‘i 7 \"fcfY d
Solution S S AN

Elastic Curve.
Due to symmetry, the joist’s maximum deflection will
occur at its center.

44464
A

Moment Function.
From the free-body diagram, Fig.h, we have
4kN/m

M =20x —4x (%szOx _ox?

Y Y Y Y Y Y y Y Y A
Slope and Elastic Curve. A\\/\ \/\V/\V/\ /’\V/
Applying Eq. 4 and integrating twice gives Y N\ ,
2,
Y _o0x —2x° [
dx 10m

20 kN 20 kN
Elj—v:10x2—0.6667x3+C1 (2)
X

Elv =3.333x°-0.1667x* +C x +C,
Here

v=0atx=0sothat C; =0,

and B
v=0 atx = 10, so that C1=-166.7.

The equation of the elastic curve is therefore l )M

'

Ll

Elv =3.333x°—-0.1667x * —1.667x x—{V
At x =5 m note that dv/dx =0 The maximum deflection is

20 kN
therefore

521 ®)
v_o=—

max E]

EXAMPLE 5.3.2

The cantilevered beam shown in Fig.a is subjected to a

couple moment M, at its end. Determine the equation T e
of the elastic curve. EI is constant. t =} I)

— .‘CA‘>| A

Solution

e

a
Elastic Curve. )
The load tends to deflect the beam as shown in Fig.a. By inspection, the internal moment can be
represented throughout the beam.
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Moment Function.
From the free-body diagram, with M acting in the positive direction,

Fig.b we have M, M
M=M, | ——
Slope and Elastic Curve. }—x—-

Applying Eq.4 and integrating twice yields (b)

d*

dx 2 =M,

Eld—v:Mox +C,
dx

El

2
By =24

+Cx +C,

Using the boundary conditions a dwdx =0 atx=0and v=0atx =0, then C; =, =0.
_dv M x
Cdx Kl
 Mx®
21

Maximum slope and displacement occur at A (x = L), for which

ML
6, =—
El
M, L’
vV, =
2EI

The positive result for 84 indicates counterclockwise rotation and the positive result for v 4 indicates
that v4 is upward. This agrees with the results sketched in Fig. a.

EXAMPLE 5.3.3 p
The beam in Fig.a is subjected to a load P at its end. ’-‘XIﬁ‘
Determine the displacement at C. EI is constant. l

il = == <
: . v
Solution 1 — J{\”‘ i
Elastic Curve. S
The beam deflects into the shape shown in Fig.a. Due to the
loading, two x coordinates must be considered. (®)
Moment Functions. ]
Using the free-body diagrams shown in Fig.b, ’7“—‘ M, M,
we have J':l ) ’ — l )
P Vi P 2a v,
M, =-—x, 0<x,<2a L 7Y 3P
2 2 ) 2
% |
Mz——§x2+£(x2-2a) "
= Px,-3Pa 2a <x,<3a
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Slope and Elastic Curve.

Applying Eq.4,
for x,
EI c;xzvzl :—ﬁx1
; 2
EI%:—gforCl (1)
1
P
Elyv, :—EX13+C1X1+C2 (2)
For x,
Eldzvz2 =Px,—3Pa
dx,
EI ZZZ L 3pw, 4, 3)
1
Elvzzgxg—%Pcvc22+C3x2+C4 4)

The four constants of integration are determined using three boundary conditions, namely
vi=0at x1=0, v;=0 at x; =2a and v, =0 at x, =2a, and one continuity equation.

Here the continuity of slope at the roller requires dvy/dxy = dv,/dx; atx; =x; =2a.

Applying these four conditions yields

v, =0 atx, =2a;

2

O:—l%(2a)3 +C,(2a)+C,

v, =0 atx, =2a,

2

0= %(261)3 - Pa(2a) +C, (2a)+C,

dv,(2a) _dv,(2a)

— %(261)2 +C, = %(261)2 —3Pa(2a)+C,

dxl de ,
Solving, we obtain
2
c,-1 c-o0 -V -2
3

Substituting C, and C, into Eq.(4) gives

P , 3Pa , 10Pa* 2Pa’
V2: xz- x2+ X

3£ 77 EI
The displacement at C is determined by setting x, = 3a We get

Pa’
YT T
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